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Abstract

The Anti-Atlas is reviewed and examined in the light of its geodynamic significance as a Palacozoic basin and fold belt. Short-
ening is accommodated by polyharmonic buckle folding of the cover in a thick-skinned fashion without the development of any
significant thrust/duplex systems. The Anti-Atlas is heavily inverted deep intracratonic basin, rather than a former passive margin of
the Palaeo-Tethys Ocean. Inversion took place in Late Carboniferous to Early Permian times. Main shortening directions changed
from NW-SE to north-south and maybe NE-SW through time, leading to the development of dome and basin patterns on scales
from 100 m to 10 km. 7o cite this article: M. Burkhard et al., C. R. Geoscience 338 (2006).
© 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Tectonique de I’ Anti-Atlas marocain. L’ Anti-Atlas est revu et examiné sous 1’angle de sa signification géodynamique comme
bassin paléozoique et comme chaine plissée paléozoique. Le raccourcissement est accommodé par le plissement polyharmonique
de la couverture, avec une nette implication du socle. Aucun systéme significatif de chevauchement ni duplex ne s’est développé.
L’ Anti-Atlas est un bassin intracratonique fortement inversé plutdt qu’une partie de la marge passive de la Paléotéthys. L’ inversion
doit dater du Carbonifere tardif/Permien précoce. La direction du raccourcissement a changé au cours du temps depuis une direction
NW-SE vers une direction nord—sud et peut-étre méme NE-SW, ce qui conduit a la formation de figures d’interférences de plis en
domes et bassins aux échelles allant de 100 m a 10 km. Pour citer cet article : M. Burkhard et al., C. R. Geoscience 338 (2006).
© 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. The Anti-Atlas of Morocco — Introduction

The Anti-Atlas fold belt of the south-western Mo-

roccan desert (Figs. 1 and 2) offers vast expanses of
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Fig. 1. The Anti-Atlas is shown in its larger context at the End of the Palacozoic [80]. Isopach contours for total sedimentary thickness are given
in kilometres for those Palaeozoic basins which have not or only weakly been involved in inversion tectonics [102]. The same colour shades are
schematically superimposed onto the Anti-Atlas fold belt in order to illustrate the estimated depth of >10 km of this basin prior to inversion.
Alleghenian basement uplifts are shown in blue (inspired by the Appalachian ‘Blue ridge’). Internal, metamorphic and in part older portions of the
Applachian—-Mauritanides—Moroccan Meseta are coloured in green and pink tones [44,73].

Fig. 1. Situation de I’ Anti-Atlas par rapport a la chaine des Appalaches a la fin du Paléozoique [80]. Les contours isopaques en kilometres sont don-
nés pour les bassins sédimentaires paléozoiques qui n’ont subi que peu ou pas de déformation [102]. Le méme code couleur est superposé a la chaine
plissée de I’ Anti-Atlas afin d’indiquer la profondeur estimée de ce bassin avant I’inversion. Les massifs de socle alléghaniens sont indiqués en bleu
(inspiré du Blue Ridge appalachien). Les parties internes, métamorphiques et plus anciennes, de la chaine des Appalaches—Mauritanides—Méséta

marocaine sont colorées en vert et en rose [44,73].

to a rejuvenation of relief with summits of 2500 m
and higher [35,47]. Geomorphologists have coined the
French term relief appalachien to characterize the pat-
tern of deeply eroded fold trains, and there is indeed a
striking similarity between the geomorphic expression
of the Appalachian Valley and Ridge and the Anti-Atlas.
Both chains are external parts of the larger Variscan
Appalachian—Ouachita—Mauritanides orogen (Fig. 1).
The relationship between the Anti-Atlas fold belt and
the internal parts of this orogen remains to be elucidated
in terms of tectonic style, timing and geodynamics.

At first sight, the Anti-Atlas shares many common
features with its American counterpart of the Valley and
Ridge in general and with the Alleghany Basin in par-
ticular. Both are located on the craton side of the oro-
gen involving a thick and fairly regular layer cake of
mostly shallow marine Palacozoic sediments. Both fold

provinces also have their non-folded time-equivalent in-
tracratonic basins further inland: Michigan and Illinois
on the American side, Taoudenni, Tindouf and others on
the African side. On closer inspection, however, and in
stark contrast to the frontal Appalachian chain, the Anti-
Atlas fold belt does not easily conform with the stan-
dard anatomy of foreland fold-and-thrust belts world-
wide [77]. The most striking difference is the existence
of major basement domes at a very short distance behind
the deformation front [76]. Similarities exist with Wind
River-style basement uplifts of the frontal Rocky Moun-
tains, but in the Anti-Atlas, the basement uplifts occur
amidst a tightly folded thick Palaeozoic cover series.
The style of cover folding is quite unique too, with a
dominance of upright detachment folds and a complete
absence of any thrusting and duplex structures [47],
with the exception of the westernmost parts of the Anti-
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Fig. 2. Geologic overview map of the Anti-Atlas, compiled from the geologic map series (1:200000) of the ‘Service géologique du Maroc’
[105-114]. NW-SE transects, used for the compilation of Fig. 4 are indicated along the southern border. A cross section through the Adrar Zouggar

anticlinorium is shown in Fig. 3.

Fig. 2. Carte géologique de 1’ Anti-Atlas, synthétisée a partir de la série des cartes 1:200000 du Service géologique du Maroc [105-114]. Les
transects NW-SE, utilisés pour la compilation de la Fig. 4, sont indiqués le long de la bordure sud. Une coupe a travers I’anticlinorium de I’ Adrar

Zouggar est donnée sur la Fig. 3.

Atlas along the Atlantic coast [8,65]. There is no thin
skinned basal décollement level and the western Anti-
Atlas does not conform with a foreland fold and thrust
belt system in the sense of Boyer and Elliott [15].

An exhaustive review of the geology of the Anti-
Atlas has been presented by Michard [64]. While many
authors have interpreted the Anti-Atlas fold belt in
terms of a predominance of strike-slip movements [43,
61,74,99], recent structural analyses depict the west-
ern Anti-Atlas folds as highly cylindrical frontal folds
related with a ‘head-on’ collision in a NNW-SSE direc-
tion [20,47,91].

In this paper the Anti-Atlas system is revisited in
light of recent data regarding the Pre-Cambrian base-
ment, the Palaeozoic cover, structural observations
within the Anti-Atlas belt as well as plate tectonic re-
constructions on a global scale. Questions of particu-
lar interest concern the Palaeozoic sedimentary basin
history and subsidence mechanisms as well as the evo-
lution of this Anti-Atlas basin near the border of the
West-African Craton through time.

1.1. The basement

The Anti-Atlas basement is a complex assemblage of
crystalline, metamorphic and sedimentary rocks. Note
that we use the term basement here in the sense of
the petroleum geologists [58], including all rocks older
than the Gondwana Megacycle. The oldest rocks of
the West-African Craton (WAC) are granitoids, gneisses
and a complex series of metamorphic rocks, attributed
to the Eburnean orogeny at around 2000 Ma [2,96,
98]. The final assembly of most of the African conti-
nental crust takes place during the Panafrican orogeny,
lasting roughly from 700 to 600 Ma [46]. Remnants
of a Panafrican suture zone are present as a dismem-
bered ophiolite series in the Bou Azzer inlier of the
central Anti-Atlas [45,55,81,96] — a structure recently
reinterpreted as an aulacogen within the WAC [32].
Elsewhere in the Anti-Atlas, the Panafrican event left
a more subtle imprint in the form of strike-slip shear
zones and thrusts [43]. Post-Panafrican continental ex-
tension is well documented for the entire Anti-Atlas re-
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Fig. 3. Cross section through the Adrar Zouggar anticlinorium [27], see Fig. 2 for location. Surface geology is constructed from the 1:200 000
geologic map [110], augmented with our own detailed mapping and measurements of folds and other mesoscale structures [20]. Compare with
Michard [64, (Fig. 20)]. This section is tentatively area-balanced. A minimum determination of map scale cover shortening is 13 to 15% from
mesoscale folding alone. Additional shortening from intra-bed strains could well add another 10% or so of shortening [47]. A resulting ‘likely’
horizontal shortening of 25 km would need a mid-crustal décollement at about 25 km depth.

Fig. 3. Coupe a travers I’anticlinorium de 1’Adrar Zouggar [27]; pour la localisation, voir Fig. 2. La géologie de surface est construite a partir
de la carte géologique 2 1:200000 [110], augmentée par nos propres cartographies et mesures de plis et d’autres structures [20]. A comparer
avec Michard [64, (Fig. 20)]. Cette coupe est approximativement équilibrée en ce qui concerne les aires. Une détermination du raccourcissement
horizontal minimal a 1’échelle de la carte est de ’ordre de 13 a 15% par le seul plissement mésoscopique. Quelque 10% de raccourcissement
additionnel par déformation intra-couche sont fort probables. Un raccourcissement total de 25 km nécessite une profondeur de décollement a

25 km de profondeur dans le socle.

gion [72,89] where indications for synsedimentary tec-
tonics are found in the clastic series of the Saghro-group
(PII?) [92], the Ouarzazate group (PIIl) and, progres-
sively fading upward within lowermost Cambrian se-
ries. The interpretation of events during the Late Neo-
proterozoic (600-540 Ma) is still a matter of debate,
due in part, at least, to the scarcity of reliable absolute
ages. The significance of the basement/cover relation-
ships and the geodynamic context are also still open
to discussion: interpretations range from syn-orogenic,
Late Panafrican molasse series shed in a collision con-
text, to post-orogenic extension and collapse with the
formation of tilted blocks and halfgrabens [55,87,91].
In a most recent interpretation [90], based on the type
and volumes of volcanic rocks associated with the PIII
Ouarzazate series, the Late Proterozoic extension event
is compared with a basin and range extensional setting,
with an important production of lower crustal melts.
Soulaimani and Piqué [88] even go so far as to pro-
pose the present-day Anti-Atlas boutonnieres as being
re-activated former metamorphic core complexes.

1.2. The cover

Prior to folding, the Palaeozoic cover series of the
Anti-Atlas must have represented a fairly regular layer
cake configuration. Overall thickness reaches 10 km
and more in the westernmost Anti-Atlas near Tiznit
and decreases to about 6 km and less in the east-
ernmost Anti-Atlas of the Tafilalt. In terms of rheo-

logical basement/cover relationships, the sedimentary
cover series is best defined as starting with the first
carbonate-bearing units of the lowermost Adoudounian,
following in most places concordantly upon the coarse-
grained PIII conglomerates of the Ouarzazate series.
This limit makes a major colour contrast in the field
and it is easily visible in satellite images. The PIII
behaves as a competent basement-like unit, while the
well-layered carbonates above it are increasingly de-
tached and folded at different wavelengths from me-
ters up to kilometres. Despite some prevailing uncer-
tainties, the PIII/Adoudounian transition just above co-
incides with the Latest Proterozoic/Cambrian bound-
ary [18,38]. There is good evidence for some exten-
sional tectonics continuing upward into the Earliest
Cambrian (Lower carbonate series of the Adoudounian)
at least in the western Anti-Atlas region [3,9,10]. Lat-
eral correlations are greatly facilitated by the pres-
ence of fossils and characteristic facies assemblages
and the Anti-Atlas cover figures among the best stud-
ied Palaeozoic series worldwide [11,17,29,37,50,64,73,
101]. A schematic compilation in the form of a time
chart along a strike parallel line is shown in Fig. 4.
Overall, the Anti-Atlas cover series are predomi-
nantly deposited in a shallow marine environment. Im-
portant platform carbonate build-ups are observed dur-
ing the Lower Cambrian of the western Anti-Atlas [13,
38]. From Middle Cambrian to Late Silurian times,
sedimentation is dominated by detrital input from the
African craton, i.e. from the east and/or the south [17,
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Fig. 4. Schematic chronostratigraphy of the Anti-Atlas. Vertical axis is time [40], horizontal axis is a section along strike from west to east (see
Fig. 2 for locations). For each vertical column, stratigraphic data have been collected and projected from northwest (older) to southeast (younger)
transects. Colour coding (see legend) is used to illustrate the dominant character of sedimentation. White is for no deposition and/or erosion.
Informal formation names as well as major events are indicated.

Fig. 4. Schéma chronostratigraphique pour I’ Anti-Atlas. L’axe vertical est le temps [40], I’axe horizontal est une coupe ouest—est le long de la
chaine (voir la Fig. 2 pour la localisation des transects). Pour chaque colonne verticale, les données stratigraphiques ont été compilées et projetées
depuis le nord-ouest (vieux) et le sud-est (jeune). Le code couleur indique le caractere dominant de la sédimentation (voir légende). Les lacunes de
non dépot ou d’érosion sont laissées en blanc. Les appellations informelles des formations ainsi que certains événements majeurs sont indiqués.
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28]. Carbonate sedimentation is resumed at the end of
the Silurian [50] and lasts for most of the Devonian, be-
ing combined with clastic inputs, throughout the Anti-
Atlas region and beyond [100]. The Lower Carbonifer-
ous [59] is marked by an renewed increase in detrital
input from the east, south and in places from the north
[66,73]. Regional-scale facies and thickness changes
point toward an open ocean to the west and northwest
throughout the Palaeozoic. It is therefore tempting to in-
terpret the Anti-Atlas basin as the landward tier of the
former passive margin of Gondwana, facing west and
northwestward. In the preserved stratigraphic record,
the shelf break, continental slope and rise of this ancient
passive margin wedge are missing, however. In com-
parison with contemporaneous North-African Palaeo-
zoic basins such as Tindouf, Reggane, Béchar, Ahnet,
Ghadames, Illizi, Hamra, Murzuq [12], the Anti-Atlas
cover series appears as just another intracratonic basin,
which happened to be close enough to the continental
edge to be more massively involved in Late Palaecozoic
collision tectonics than its neighbours.

1.3. Cover series as a mirror of distant tectonic
events?

Palaeozoic sedimentation of the Anti-Atlas region is
fairly continuous throughout, and minor disconformities
are most easily explained in terms of sequence stratig-
raphy, i.e. sea-level and/or climatic changes. Probably
the most important climatic events are the Late Ordovi-
cian glaciations, recorded within the 2nd Bani micro-
conglomerates [39,56,95] and an associated erosional
discordance. The following sea-level rise is hold re-
sponsible for the deposition of the thick interval of Sil-
urian black shales, a major source rock of the North-
African realm [12,68] and a potential décollement hori-
zon. The famous Devonian Kellwasser—event at the
Frasnian/Famennian boundary [16,54] is probably a
meteorite impact that left its imprint in the faunal as-
semblages.

As illustrated in Fig. 4, there is only one noteworthy
interruption of the Palacozoic sedimentary cycle in the
Late Cambrian. Classically, it has been correlated with
a sardic phase of orogeny [64] or with an epeirogenetic
uplift [29]. The widespread (although not absolute) na-
ture of this hiatus, common to all North-African basins
from Morocco through Tunisia, Algeria to Libya [25]
speaks for a general, eustatic, rather than a local, tec-
tonic origin. Crossley and McDougall [26, (p. 160)]
quote evidence for block faulting and marked angular
unconformities in Algeria; similar evidence is missing
in the Anti-Atlas of Morocco, where some lateral thick-

ness changes are subtle at best, and strongly overprinted
by later folding. Higher up in the stratigraphic col-
umn, subtle lateral facies changes, sedimentary wedges
and minor erosional disconformities have long been
interpreted as echoing distant tectonic phases such as
Taconic, Acadian, Bretonne and Sudete [64], known
from either the Appalachian or the European Variscides.
New palaeogeographic reconstructions (Fig. 6) of the
evolution of Gondwana and the reassembly of Pangea
provide a reference frame against which such statements
can be tested [83,86,93].

The Late Cambrian hiatus could be interpreted as
related to a new phase of rifting further north and con-
comitant erosion on a southern rift shoulder. At least
two important Palaeozoic rifting phases have indeed
been postulated to occur along the northern border of
Gondwana [93]. Avalonian (and Armorican, etc.) ter-
ranes or continental fragments are supposed to originate
from the northern margin of Gondwana in Cambrian
times, leading to the opening of the Rheic Ocean. A sec-
ond rifting event of Hunic terranes during the Lower
Silurian would have led to the formation of the Palaeo-
Tethys ocean [93, (Fig. 3)]. In this proposal, future
Avalonian and Hunic terranes represent former active
subduction margins off the northwestern African cra-
ton. Both terranes would have drifted away after two
successive stages of back-arc rifting giving way to two
(Rheic, Paeothethys) Palacozoic oceans. This proposal
opens new perspectives in the interpretation of events
known in the various Palaeozoic terrains of Morocco.
The Anti-Atlas—Tindouf basin would not have been any-
where close to the open ocean prior to Late Silurian
times. We see little evidence for rifting phases from
Middle Cambrian times onward, however, and the easi-
est interpretation is to assume that none of those rifting
events did take place anywhere close to the Anti-Atlas
basin, but rather in a more external position or in a dif-
ferent place along the northern margin of Gondwana.
The former passive margin of Gondwana would be en-
tirely obscured by the future Atlantic rifting and hidden
below the Mesozoic onshore and offshore basins. Al-
ternatively, the Anti-Atlas basin could be interpreted
as the southeastern half of an oblique back-arc basin
that evolved into a passive margin in Silurian—-Devonian
times, after a (right lateral?) strike-slip departure of Hu-
nic terranes.

On a local scale, geologists have also long tried
to correlate events between the Meseta, north of the
present-day High Atlas chain, and the Anti-Atlas [70,
73,74]. There is no direct evidence for the existence of
any kind of tectonic deformation within the Anti-Atlas
at least up to Middle Carboniferous times. It is thus
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quite obvious that the Moroccan Meseta underwent a
very different tectonic history as compared to that of
the Anti-Atlas, from the Ordovician onward [69,71].
Many parts of the complex assemblage of units in the
Meseta have suffered several intense phases of deforma-
tion, metamorphism including the intrusion of granites
in Silurian times and from the Lower Carboniferous on-
ward [49]. In this respect, the Meseta is comparable
to the internal Appalachian chain, with its Taconic and
Acadian belts. The most important question still open
in this context regards the relative position of the Mo-
roccan Meseta block with respect to the stable African
craton. In the light of the most widely accepted plate
tectonic models [86], the Meseta might be regarded as
a small continental fragment (or terrane) rifted off the
northern margin of Gondwana during an ill-defined pe-
riod in the Lower Palaeozoic, comparable to Avalonia
and the more recently postulated Hunic terranes [93].
Such fragments would have been accreted again to
the African craton only during the latest stages of
continent—continent collision in Late Carboniferous [14,
33]. Such mobilistic proposals have been made as early
as 1971 by Schenk [82], but the lack of an identified su-
ture between the Anti-Atlas domain and the Meseta and
the similarities in the Lower Palaeozoic stratigraphic
record are quoted as evidence against such a sce-
nario [49,51,52,71,73,75]; a recent confirmation of the
Meseta block being of African affinity is provided by
crustal xenoliths found in Triassic lamprophyres [31].

2. Anti-Atlas: what Kkind of sedimentary basin?

The Anti-Atlas Basin has been involved in Late
Palaeozoic folding, uplift and erosion and it is therefore
difficult to establish its true initial shape and extent to
the west and to the north, where the Alpine High Atlas
is a further obstacle to restorations. East and southeast-
ward, the transition towards the neighbouring petroleum
bearing Palaeozoic basins of Bechar and Reggane are
somewhat obscured by a thin blanket of Upper Creta-
ceous sediments (Hamada), but compilations from re-
flection seismics reveal the gross trends in the form
of isopach contour maps shown in Fig. 1 [6,102]. The
Anti-Atlas actually appears to be the northern half of
the Tindouf Basin. It is not clear if the two are sepa-
rated from each other by some sort of swell or basement
high, nor is there any known reason for the localiza-
tion of the remarkably smooth trend of the Ouarkziz
chain (Fig. 1), which represents the deformation front
of the Anti-Atlas belt to the SSE (Figs. 2 and 3) —
and the northern border of the Tindouf basin. A strike-
slip boundary (of Alpine age) has been proposed to run

along Dréa lowland north of the Jbel Ouarkziz [99],
but field evidence seemingly rules out any significant
wrenching of any age to occur in this area [20,47,91].
To the east, the Anti-Atlas belt — or basin — turns gradu-
ally into the Ougarta chain [30,48]. Just as in the case of
the Anti-Atlas belt, folding, uplift and erosion prohibit
the establishment of original isopach contours for the
former Ougarta Basin, but it is quite clear that this intra-
tratonic chain is localized along a former trough of NW—
SE orientation. The same structural trend is also present
in neighbouring basins of Reggane and Bechar and it is
generally admitted that this direction is inherited from
the Panafrican orogeny [24]. Our compilation in Fig. 1
further illustrates the location of the different Palaeozoic
basins with respect to the Appalachian—Variscan chain
and the subsequent rifting axis of the Atlantic [80]. The
question arises of what was the geodynamic setting of
these different North-African basins. Is the Anti-Atlas
Basin a remnant part of a passive margin of Gond-
wana (Fig. 6)? The total thickness of the sedimentary
pile alone might be used as an argument in favour of a
passive margin setting for the Anti-Atlas with the free-
board to the WNW. Other Palaecozoic basins, however,
at hundreds of kilometres inboard, accumulated similar
total sediment thicknesses in clearly intracratonic set-
tings (Taoudenni > 8 km, Murzuq > 6 km). The same is
true for large Palaeozoic basins on the American craton
such as the Michigan (ca. 5 km) and to a lesser degree
Williston, Illinois, and Hudson Bay [57]. A major argu-
ment against a passive margin interpretation is the lack
of any sedimentary record for deposits from the outer
shelf, talus and continental rise. Despite some general
tendency to more open marine conditions westward,
there are no deep water sediments preserved anywhere
in the Anti-Atlas (with the exception of some debatable
flysch deposits of Carboniferous age at the northern bor-
der near the High-Atlas front [66]. The determination
of palaeo-water depths within the Carboniferous clastic
series of the Anti-Atlas remains a matter of controversy,
however. Sedimentary structures, such as graded bed-
ding and intense convolute bedding as well as the pres-
ence of olistrostromes has been used as an indication for
turbiditic flysch type sediments laid down in deep wa-
ter in a compressional context [66]; we could not find
any convincing flysch sequences, however, and a shal-
low water origin in a coastal and deltaic environment
seems an equally appropriate interpretation of the sedi-
mentary structures [41,59].

A neutral reading of the stratigraphic record of the
Anti-Atlas (Figs. 4 and 5) reveals an eventless sub-
sidence history very comparable to contemporaneous
intracratonic basins of North America [7,53]. The to-
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is time [40], vertical axis is sediment thickness as observed today,
compiled from a vast body of stratigraphic literature regarding the
western Anti-Atlas. No decompaction, palaco-water-depths, eustatic
corrections nor back-stripping has been applied. Principal informal
formation names are given along the top of the chart, while major
events of the Gondwana margin are indicated at the bottom.

Fig. 5. Courbe d’accumulation sédimentaire pour 1’Anti-Atlas
sud-ouest entre les transects de Goulimine et de Foum el Hassan (voir
Fig. 4). L’axe horizontal donne le temps, linéaire en millions d’années,
I’axe vertical donne 1’épaisseur des sédiments en kilometres. Les don-
nées ont été compilées a partir d’'un grand nombre de publications
concernant la stratigraphie de 1’ Anti-Atlas occidental. Aucune correc-
tion de décompaction, de paléo-profondeur d’eau, d’eustatisme ou de
délestage n’a été appliquée. Les principaux noms de formations, in-
formels, sont donnés en haut du graphique, tandis que les événements
tectoniques majeurs sur la bordure de Gondwana sont indiqués en bas.

tal accumulation curve shown in Fig. 5 illustrates the
general difficulty in the interpretation of such linear
on and off subsidence trends. In the case of the Anti-
Atlas, more than 10 km of shallow marine sediments
were accumulated over a time span of almost 200 Ma.
Even though we have not applied any decompaction
nor backstripping procedure, it is quite clear that this
curve lacks tell-tale features of rapid tectonic rifting fol-
lowed by thermal subsidence as expected in the case of
a rift—drift passive margin evolution [4]. Just as in the
case of the Michigan [53] and of many other intracra-
tonic basins, the underlying mechanism of subsidence
remains enigmatic [57,85]. Explanations put forward in-
clude thermal decay, uncompensated masses, imposed
load as well as the far field, flexural response to tectonic
compressional forces and lithospheric buckling [85,103,
104]. The only rifting phase that left its imprint in the
rock record is ill constrained in its age; the terminal Pro-
terozoic PIII-Lower Cambrian basal conglomerate and
lower limestone series are all deposited in a rifting con-
text as confirmed by a magmatic suite of calco-alkaline
to tholeiite—alkaline volcanics [90]. Even this rifting
event does not clearly show up in Fig. 5 either, with less
than 2 km preserved thickness of PIII series, unless we
assume the Late Proterozoic rifting was short and very

late. Alternatively, and more probably, the Anti-Atlas
was the locus of a major broad thermal dome with lim-
ited syn-rift deposits in widely distributed small graben
and half-graben systems, rather than a well defined nar-
row rift trough with associated shoulders. Subsequently,
this broad swell (or basin and range-type collapse?)
would not have led to any successful rifting in the Anti-
Atlas region but to a long phase of thermal subsidence
throughout the Palaeozoic.

3. The Anti-Atlas chain — what kind of fold belt?

The western Anti-Atlas chain is dominated by highly
cylindrical, upright fold trains. In contrast to the Ap-
palachians and other foreland fold-and-thrust belts
worldwide [77,78], there is no evidence for any thin-
skinned thrusting with the exception of the westernmost
parts of the Anti-Atlas along the Atlantic coast [8,65]
and some blind thrusting below the Ouarkziz ridge. In
our interpretation [19,47], the Ouarkziz ridge, a slightly
curved monocline of more than 400 km length, is the
surface expression of a triangle structure [97]. We pos-
tulate the existence of a blind thrust to end somewhere
below the Tindouf Basin and a major NNW-vergent
backthrust to re-emerge within a thick series of shales
above the Devonian Rich, tightly folded and pushed
under the Carboniferous Ouarkziz monocline (Fig. 3).
This mountain front of the southwestern Anti-Atlas is
progressively loosing its significance eastward, how-
ever [36]. East of Tata, Anti-Atlas fold trains are de-
creasing in number and individual folds are decreasing
in amplitude, tightness and cylindricity. There is also
a change in general orientation from SW-NE to east—
west and the Anti-Atlas fold belt seems to merge with
the Ougarta chain of SE-NW orientation [24,30,48].

Some layer-parallel décollements and multiple de-
tachments are obviously required between different
structural levels, each folded with its own characteristic
wavelength and amplitude, but no such décollement has
ever been mapped to step up in a ramp-flat geometry
across competent beds. Our recent structural analyses
[20,47] confirm previous studies [23,64] in the sense
that individual marker beds are just folded, but never
thrust upon each other in a duplex style. We conclude
that the Anti-Atlas folds are a natural case of truly poly-
harmonic buckle folding. The abundance of incompe-
tent shales allowed the subordinate competent beds such
as the Ordovician Bani quartzites and the Devonian
Richs carbonates to develop their own characteristic
folds. Overall map scale shortening on the order of 10 to
20% was accommodated without (cover-)thrusting [47]
and the Anti-Atlas defies any straightforward interpre-
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tation in terms of a classic thin-skinned thrust system
organization [15].

On the crustal scale, however, the cover shorten-
ing determined across the western Anti-Atlas fold belt,
poses a serious balancing problem: where and how is
this shortening accommodated within the basement?
Large structural domes, the so-called boutonnieres [22]
of Proterozoic basement rocks, crop out at a very short
distance behind the south-eastern front of the south-
western Anti-Atlas and these basement inliers punc-
tuate the tightly folded Palaeozoic cover. The lack of
any mapped thrusts has led earlier authors to consider
even these basement uplifts as just another, deeper level
of crustal scale folds [22,23] dubbed plis de fonds by
Argand (Fig. 5A-C) [5]. Balancing and rheology con-
siderations make such a gentle folding interpretation
improbable [67], however, and we infer that the Anti-
Atlas basement uplifts must be associated with a series
of major crustal scale reverse faults, supposedly in a
Windriver-style well known in the foreland of the Rocky
Mountains [67,76,94]. This uncommon proposal is il-
lustrated in a section across the western tip of the Adrar
Zouggar anticlinorium (Fig. 3) [27,110]. The backbone
of this structure is made of Ordovician quartzites [27]
and drilling in the 1960s has documented the existence
of a basement core at —3.4-km depth, at least 2.5 km
above the regional basement top (—5 km) as constructed
between the synclinorium to the north and the Tindouf
basin to the south. Gently plunging fold axis allows the
projection of the Jbel Rich (Devonian carbonates) folds
above the top of this anticlinorium. Southward, defor-
mation ends below the Jbel Ouarkziz triangle structure,
while northward, another major basement uplift of the
Tagragra d’ Akka boutonniere has led to a complete re-
moval of all cover series. The tightly folded Bani (Or-
dovician) clearly projects above this basement uplift,
however. The Adrar Zouggar and Tagragra d’ Akka an-
ticlinoria nicely illustrate the balancing problem asso-
ciated with such basement ‘folds’. A conservative un-
folding of the well-exposed Devonian and Ordovician
marker beds reveals a minimum of 12 to 15% shorten-
ing ratio — this amounts to some 17 km of minimum
line-length shortening (Fig. 3). In order to compensate
this shortening at the basement level, we postulate the
existence of a set of rather steep (40 to 60°) faults, pos-
sibly Late Proterozoic normal faults that would have
been strongly inverted. This structural style cannot be
mapped in the case of the Adrar Zouggar, but it is com-
patible with structural observations made along the bor-
ders of more internal, deeply eroded basement inliers
such as the Tagragra de Tata [21,47]. Simple area bal-
ancing considerations allow us to estimate the depths

of detachment. With an excess area of ca. 380 km? of
basement above regional, a minimum shortening esti-
mate of 17 km requires a basal detachment in the lower
crust, at ca. —32 km depth (Fig. 3). Note that present-
day Moho depth is thought to be at ca. —35 km [36] at
least. A more likely estimated horizontal shortening of
some 25 km, taking into account layer-parallel shorten-
ing features and other bed internal strains [47], would
lead to a lesser depth of detachment at mid-crustal lev-
els of ca. —25 km (Fig. 3).

The Appalachians also used to have their basement
problem in the form of the Blue Ridge (Fig. 1), a lin-
ear belt pre-Cambrian basement rocks of Grenvillian,
i.e. American craton affinity [44,63,79] cropping out
at some distance behind the thin-skinned frontal Valley
and Ridge fold-thrust belt. While these basement uplifts
have long been considered as more or less autochtho-
nous too, crustal scale seismic reflection profiling has
provided clear evidence of a truly allochthonous na-
ture of these basement slivers, detached from the former
edge of the passive margin and thrust craton-ward by
up to 200 km! [44, plate 1, section C], a tectonic style
anticipated by Argand [5, (Fig. 5, case E)], [63]. In com-
parison, our inversion interpretation of the Anti-Atlas
basement domes remains very modest and autochtho-
nous indeed and the question arises if a Blue Ridge
type interpretation would not be more appropriate in the
case of the Anti-Atlas? We have not found any positive
arguments in favour of such an analogy, and we con-
clude that the similarities between the Appalachians and
Anti-Atlas fold belts are not extending far below the ge-
omorphic expression of a common Appalachian relief.
We further propose the structural style of the Anti-Atlas
belt being a rather unique combination of basement up-
lifts in a Windriver style that happened to occur below a
more than 10-km-thick series of mostly soft, shale dom-
inated sediments. Tectonic compression of this Palaeo-
zoic basin leads to a massive inversion of the underlying
basement structures and a simultaneous polyharmonic
buckle folding of the basin fill. Despite its proximity to
the Appalachian—Variscan chain, the Anti-Atlas is not
easily classified as a foreland fold-thrust belt to this oro-
gen. In many respects, it is rather to be considered as a
severely inverted intracratonic basin — related to the oro-
gen on a crustal to lithospheric scale, supposedly with a
floor thrust at mid to lower crustal level. The Anti-Atlas
belt has a direct connection to the Ougarta—Ahnet fold
belts, but other North-African basins suffered a simi-
lar inversion event at the end of the Palaeozoic [24,42]
in more isolated, clearly intra-cratonic settings. Some
striking analogies in structural style and complexity also
exist with the Iberian chain, an intraplate Cretaceous
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inversion structure in the southern foreland of the Pyre-
nees [84].

Interestingly, there are no intracratonic structures of
Palaeozoic age known cratonward of the Alleghenian
mountain front of the Appalachians. However, the very
same craton reacted quite sensitively to Rocky Moun-
tain deformations and subduction along its western
border, with the formation of basement uplifts and
inversion of many old graben structures hundreds of
kilometres eastward, well within the North American
craton [60].

4. Conclusion: plate tectonic setting through time
(Cambrian to Permian)

The tectonic evolution of the Anti-Atlas basin and
fold belt in relation to plate tectonics on a global scale
is illustrated in Fig. 6, and summarized below:

300 Ma Blue Ridge

Pennsylvania salient
by

NAC

— during the Panafrican orogeny, a series of terranes

are accreted to the West African craton on its north-
ern and probably western side. While the northeast-
ern suture (Bou Azzer) and terranes to the north-
east will remain in place, northwestern and western
borders are subsequently reactivated and a series
of terranes or continental fragments will be ripped
off again during the Palaeozoic. The southwestern
Anti-Atlas, however, at the margin of the Saha-
ran metacraton [1] remains attached to Gondwana
throughout its Palacozoic history;

in Late Proterozoic—Early Cambrian, the Anti-Atlas
area is in extension with the formation of many
widely distributed graben and halfgraben struc-
tures, filled in with coarse clastics (PIII) mostly
of igneous origin. The youngest volcanism is tho-
leiitic—alkaline and indicates an intracontinental

PaleoTethys
subduction

vergence ?

PaleoTethys

Fig. 6. Schematic evolution of the Anti-Atlas (star) in comparison with the Appalachian chain through time on a global, plate tectonic scale.
Palaeo-tectonic reconstructions are redrawn and simplified from Stampfli and Borel [93]. Cross sections (cartoons) on the left-hand side (Ap-
palachians) are according to Fichter [34].

Fig. 6. Evolution schématique de I’ Anti-Atlas (étoile) en comparaison avec la chaine des Appalaches 2 travers le Paléozoique, 2 une échelle globale.
Les cartes paléo-tectoniques ont été redessinées et simplifiées a partir de Stampfli et Borel [93]. Les coupes schématiques a gauche (Appalaches)
sont selon Fichter [34].
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setting. The geodynamic significance of this exten-
sional event is not entirely clear, however. It could
be related to a southeast dipping, major and long-
lived subduction zone on the northwestern margin
of Gondwana, causing a wide area of extension cra-
tonward in a basin and range style. Alternatively,
extension could be due to a (series of) hot spot(s)
within Gondwana;

— from Middle Cambrian through Middle Carbonif-
erous, the western Anti-Atlas basin is character-
ized by a strong and essentially linear subsidence
trend, leading to the accumulation of more than
10 km of mostly fine-grained clastic sediments,
shed into an epicontinental sea from the African
craton. There is little evidence in this stratigraphic
record for tectonic events postulated to have taken
place along the active northwestern plate mar-
gin of Gondwana [93]. The departure of Avalon,
Armorica and Hunic terranes from this margin
in successive events of back-arc spreading must
have brought the Anti-Atlas Sea increasingly closer
to the open ocean(s) (Rheic and Palaeo-Tethys).
From Silurian times onward, the Anti-Atlas Basin
could thus represent the passive margin of the
Palaeo-Tethys ocean, but very little if any sedi-
ments of the more distal parts of this passive mar-
gin are preserved anywhere (with the possible ex-
ception of terrains west of Guelmin [8] and near
Tineghir [66]);

— in Late Carboniferous—Permian (?) compression
leads to an event of strong inversion and fold-
ing. Basement is uplifted and folded into huge an-
tiformal culminations (boutonniéres) which punc-
tuate the southwestern Anti-Atlas fold belt. The
structural relief of the basement culminations is
in excess of 10 km; minimum estimates of total
shortening are 15 to 25 km. The Anti-Atlas belt
does not represent a classical frontal, thin-skinned
foreland fold-and-thrust-belt of the Appalachian—
Variscan orogen, however, but rather an intracra-
tonic, thick-skinned basement inversion belt. Sim-
ilar time-equivalent belts occur further east into
the African craton (Ougarta, Ahnet), but no such
structures are known on the American side of the
Appalachian chain.

In conclusion, the Anti-Atlas was a fence-rider
throughout, watching the action from a distance, not
paying any tribute, nor suffering too much from the
events going on all along the very active margins of
Gondwana [49,62].
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